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Binding Energies of Nuclei 
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A new theoretical method is proposed to describe known properties of nuclei. 
The method is based on the theory of nuclear forces given in an earlier paper 
and results in formulas for the binding energies and dimensions of nuclei which 
accord with experimental data. 

Let us consider a classical particle which interacts with nuclear and 
electromagnetic fields. Its movement in the fields can be described by the 
following equations (Rabinowitch, 1994): 

P0 exp(q ~/c2) ( c2 d2xklds2 + dq~/ds dkk/ds - OqdOxD 

- OF~ ax" /as  = o O )  

(x I, x 2, x 3) e [l(x ~ (2) 

OZq~lO~ Ox. + (m~rclh)2q~ = -4~r(Glmp)2po exp(tp/c 2) 

Fk,, = OAJax k - OAklOx ~ (3) 
a2Ak/ax"ax. = 4"rr0 dxk/ds, OAk/Ox k = 0 

where ~ is the scalar potential of nuclear forces, Ak are electromagnetic 
potentials, P0 is the density of  the particle mass mo at rest when ~p = 0, 0 is 
the density of the particle charge, dxklds is the 4-vector of its velocity, ds z 
= dxkdxk, m~ and mp are the masses at rest of  the neutral pion and proton, 
respectively, G21hc is a dimensionless constant of  the strong interaction, and 
fl(x ~ is the small spatial volume, depending on time, which is occupied by 
the moving particle. 
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Let us write down a condit ion which must  be imposed  on the mass  of  
the particle to regard it as classical and hence for equation (1) to be correct. 
The  condition follows f rom the known correlation (Naumov,  1984) 

(2mEb)l/Xr. > >  h (4) 

where  Eb, m, and r .  are the binding energy, mass  at rest, and radius of  the 
particle, respectively. 

Since r - N I/3 fm, Eb[N ~ 10 -2 mpc 2 (Naumov,  1984), where N = m/ 
mp, f rom (4) we get 

(m/mp) 4/3 > >  1 (5) 

Therefore,  we can consider a particle classical when condit ion (5) is satisfied. 
In accordance with (5), we will further examine  nuclei with m/mp >- 20. 

Let  us consider a nonrelativistic nucleus moving  under the action of  
external sources of  the e lectromagnet ic  field with potentials A ext and apply 
equations (1) - (3)  to it. Then in the nonrelativistic case under consideration 
we get 

Po exp(q o/c2) ( w~ + aq~/ax ~) + O(OAo/OX" - OAdOx ~ = O, a =  1 , 2 , 3  
(6) 

(7) (x z, x 2, x 3) E fl(x~ A, = A~ t + A~ xt 

AA~ at = -4 ' r r0 ,  AA~ t = 4~rOv~/c (8) 

where v ~ = v~(x ~ and w '~ = w"(x ~ are the velocity and acceleration, respec- 
tively, o f  the nucleus, and Ain nt a r e  the potentials o f  the electromagnet ic  field 
generated by the nucleus itself. 

F rom (8) we obtain the correlation for  Ain nt 

AF t = -A~ontv'Vc, v ~ = v~(x~ a = 1, 2,3 (9) 

A~nt = In  OIR dy ] dy 2 dy 3, R = [(x I - yt)2 + (x 2 _ 3.2)2 + (x 3 _ y3)2]tr2 

(10) 

Therefore,  f rom (6), (7), and (9) we derive the fol lowing equation in 
the considered case I v~lc I < < 1: 

[C 2 exp(qo/c 2) + ~lAiont]wCX/c 2 + O[c 2 exp(q~/c2)]/Ox a 

+ "V ~Ab "t /a~ = "vE~xt 

~/ = 0/po,  a = l ,  2,  3 (1 l )  

where E~xt are electric field intensities generated by the sources external to 
the nucleus. 
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Let us assume that the external sources are remote from the nucleus. 
Then inside the particle the external electromagnetic field is homogeneous 
and q~ = q~int, where q~i,t is the potential of the nuclear field generated by the 
nucleus itself. 

Since the accelerations w" must be the same for different points of the 
particle and E~ext are arbitrary but also the same for those points, from (11) 
we derive the two equations 

~ /=  0/p0 = const 

C2 exp(q0int/c2 ) + ,yAbnt = const, (x l, x 2, x 3) • ~'~(x 0) (12) 

Equations (11) and (12) give the classical law of Newtonian mechanics 

m w  '~ = qE~ext (13) 

where q is the charge of  the nucleus and m is its inertial mass, given by the 
following expression: 

m = m0 exp(tpint/cl) + qAio"t/c 2 = const 

mo = qpo/0 = const, (x l, x a, x 3) E I~(X ~ (14) 

The two equations (14) permit us to describe the distributions in the 
nucleus of the charge q with the density 0 and the mass m0 with the density 
P0- As follows from (l)  and (14), m0 is the nucleus mass at rest when q~ = 0. 

Let us now examine a nucleus which is at rest relative to an inertial 
frame of  reference. In this case E~'~xt = 0. We have a stationary, spherically 
symmetric problem. Let r and r ,  be the distance between a point of the 
nucleus and its center and the radius of the nucleus, respectively. Then we 
have r -< r , .  

For the region r --< r ,  occupied by the nucleus we apply equations (2), 
(8), and (14) and get 

f "  + 2 f ' / r  - (m~c/h)2f  = 4,'trO(molq)[G/(mpC)]ze f, f = tpiat(r)/c2 (15) 

13" + 213'1r = -4ar0/c  2, 13 = Ab"t(r)lc 2 (16) 

moef f  ' + q13' = O, 0 <- r <- r .  (17) 

From (16) and (17) we find 

f3' = - - (mo/q)e f f  ', ~ .  = _(mo/q)e f [ f , ,  + (f,)2] (18) 

4xr0/c 2 = (rno/q)ef[.[ " + 2 f ' / r  + (f,)2], f = f ( r )  (19) 

From (15) and (19) we derive the following equation for the nuclear 
potential  ~0int: 

(~2e2f - 1)(f" + 2f ' / r )  + ix2e2f(f') 2 + v2f  = O, 0 <-- r <-- r .  (20) 
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where 

I~ = Gmolmt, q, v = m~clh  (21) 

Let us consider equation (2) for ~int in the region r > r ,  outside the 
nucleus. This equation has the following form: 

f '  + 2 f ' l r  - v2f  = 4"tr[Gl(mpc)]2~.oe/, f = q0i"t/c 2, r > r ,  (22) 

where % = e0(r) is the density of  the mass at rest of  virtual pions (Feynman, 
1961) created in the physical vacuum at the nucleus surface r = r ,  because 
of  the influence on it of  this surface. 

Considering that the lifetime of  the virtual pion is given by "r --  h/m=c 2 

(Naumov, 1984) and their mean speed is I~1 < <  c as the surface r = r ,  is 
immovable,  we find that the mass of  the virtual pions is mainly concentrated 
in a very narrow region, r ,  < r < r ,  + A, where A < <  hlm~c.  

Therefore, the mass density e0(r) of  the virtual pions can approximately 
be represented by means of the delta function ~(r) as 

%(r) = cr~(r - r , ) ,  r > r . ,  where ~(r) d r  = 1 (23) 

cr is a constant equal to the mass of  the virtual pions per unit area of  the 
nucleus surface r = r , .  

Let us define 

x = vr, x ,  = v r , ,  v = m ~ d h  (24) 

Then from (20) and (22) we get 

(l~2e 2z - 1)(fl' + 2 f ' / x )  + p.2e2-rff')2 + f = 0, 

f "  + 2 f ' l x  - f = koe/, x > x ,  

X0 = Xo(X) = 4ar~o(x)[Gl(mpcv)] 2, f = f ( x ) ,  

0 - - < x - - < x ,  (25) 

(26) 

f(oo) = 0 (27) 

From equation (26) and the condition f(oo) = 0 we obtain the integral 
equation 

f ( x )  = e x hoe/-Xx dx  - e -x  hoe/+Xx dx + D (2x) (28) 

O = const, x --> x ,  
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Equation (28) gives the following formulas for f (x , )  and f ' (x , ) :  

f (x , )  = - [ f ~  hoef-xx dr. eX. + D e - X . ] / ( 2 x , )  

f ' ( x , )  = [ f ~  hoef-Xx dx  ( 1 -  x ,)e~.  + D(1 + x , ) e -X . ] / (2x2 , )  (29) 

From (29) we find 

f(x.)(1 + x , )  + x , f ' ( x . )  = - e ' ,  koef-~x dx (30) 

Correlation (30) is a condition at the point x = x ,  for the solution of 
equations (25) and (26) to vanish at infinity. 

From (23), (27), and (30) we get the equality 

f(x,)(1 + x , )  + x , f ' ( x , )  = - sx ,e f (~ , )~  (31) 

where 

s = 4"tr[G/(mpC)121v, tr = const (32) 

Let us turn to the electromagnetic potential A~ nt, for which we have the 
classical formula in the region r --> r ,  

[3(r) = Aiont(r)/c 2 = q/c2r, r >-- r ,  (33) 

q is the nucleus charge. 
From equations (16), (24), and (33) we obtain 

~(x) = 6(0) + 4"rr t(tlx - 1)0(t) dtl(cv) 2, 0 <-- x <-- x .  (34) 

~3(x) = qv/c2x, x >-- x ,  (35) 

From (34) and (35) we get 

~ ' (x,)  = -4~r * t20(t) dt l (cvx , )  2 = - q v l ( c x . )  2 (36) 

Formulas (19) and (36) give 

o ~* x2eZ[f " + 2f ' lx  + (f,)2] dx = q2vlmoc 2, f = f ( x )  (37) 

Let us now examine equation (25). From it we get 

y" + 2y' /x  --- - H ( x ) ,  0 <-- x <-- x ,  (38) 
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where 

y = e f (x) ,  H(x)  ~--- [32 In(y) + ( y ' ) 2 ] / [ y ( I . l , 2 y 2  - 1)] (39) 

From (38) we obtain the integral equation 

y(x)  = y(O) + t(tlx - l)H(t) dt (40) 

Equation (40) can be represented in the form 

y(x)  = ulx + v, u = ~H( t )  dt, v = y(O) - tH(t)  dt (41) 

From (41) we easily obtain 

y ' ( x )  = - u / x  2 (42) 

Consider equality (37). It can be represented as follows: 

If :* x2(y" + 2y ' /x)  dx  = q2vlmoc2, = e f(~) (43) Y 

From (38) and (43) we get 

f* x2 H (x) dx  = - q2vlmoe2 (44)  

and, taking into account (41), we have 

u ( x . )  = - q2vlmoea (45) 

Formulas (39), (42), and (45) give the following condition: 

x2, y '  ( x , )  = x2,eI(X.)f' ( x , )  = q2v/moc2 (46) 

From (31) and (46) we get one more condition at the point x , .  

f(x,)(1 + x , )  + q2ve-Y(X&moc2x, = - b x ,  e f(x*), b = s t r  (47) 

By using (14). (33). and (35) we obtain the formula for the nucleus 
inertial mass m 

m = m o  ef(x*) --~ qf3(x , )  = m o  ef(x*) "at- q2v/c2x,  (48) 

Let A and Z be, respectively, the number of nucleons and the number 
of protons in a nucleus. Then, since m0 is the nucleus mass at rest when cp 
= 0. we have 
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mo = Zm6 + (A - Z)mS, q = Zep (49) 

where m~ and mS are the masses at rest when q0 = 0 of  the proton and neutron, 
respectively, and ep is the proton charge. 

From (48) and (49) we get the formula for the binding energy Eo of 
the nucleus 

E b = c2[Zmp + (A - Z ) m .  - m] 

= c2{(A - Z)(mn - mp) + Zmp[l  - (1 + ~p)e f(x*)] 

+ (A - Z)mp[1 - (1 + $,,)e/(X*)]} - ZZe~vlx.  (50) 

where mp and m. are the experimental values of  the masses at rest of the 
proton and neutron, respectively, and 

rn6 = me(1 + ~p), rn~ = me(l + ~,) (51) 

~e and b,, are some constants. 
Let us consider equation (25) with conditions (46) and (47) to determine 

x ,  and f ( x , ) .  We seek their solution f ( x )  in the form 

f ( x )  = 1 + , 0 <- x <-- x ,  (52) 
n = [  

The function e zI(x) in (25) can be expressed as the power series 

e 2/(') = e 2f~ ~ _ 2 d , ~  /k! = e 2f~ p,,x 2" (53) 
k=0 = n = O  

p .  : ~.__ 2ifloq,,.ili', n >-- 1, Y.__ q,,.i x2" : d . x  2" 
i = 1 n = i  n =  1 

po = 1, 

n--l  

qn,i = 
j = i - - I  

d,,-jqj.i-l, 1 -< i -< n, qo,o = 1; qj.o = O, j > 0 

(54) 

From (25) and (53) we obtain 

2 D 2 P ,v~  - 1 (n + 1)(2n + 3)dn+lx 2n + dnx 2n 
n=O n=O 

n=O n=O k=O 

oo 

n=O 
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Po = 1, do = 1, D = la.e fo, 

Hn = Hn(D,  fo, dl,  d2 . . . . .  d,,+O, 0 <- x < x .  (55) 

From (55) we have the equations H.  = 0, n -> 0, which give the 
recurrence correlations 

d,,+l = F(O, fo, do, dt . . . . .  d~) 

n--I  

= - d~ + 2D 2 ~ [(i + l)di§ + 3) + 2fo(n - i)d~-i) 
i=O 

i-I } 
+ 2fop~-i ~ (k + 1)(i - k)dk§ 

k=O 

• [(2n + 2)(2n + 3)(/92 - 1)] -1, n --> 0, do = 1, 
- 1  

~ = 0  
0 

(56) 

From (56) we find 

dl  = - 1 / [ 6 ( D  2 - 1)1, d2 = 0.3(1 + 1602fodl)d 2 

d3 = [d2 + 4D2fodt(Sfod2~ + 17d2)]dl/7 . . . .  (57) 

where, owing to (21) and (49), 

D 2 : -  ~.L2e 210 = a(1 + ~)2e2f~ 2 

a = G2/e 2, ~ = ~pZJA + ~(1  - Z/A) (58) 

Conditions (46) and (47) give the following equations: 

RZZ/A = 2(1 + 8)x3,f0e~X.)(dl + 2d2x2, 4- 3 d ~ ,  + .--) 

R -- (e2p/l~c)mJmp = 0.00104966 

fo = f ( x , ) / ( 1  + dtx2, 4- dEX4, + d~r6, + " . )  (59) 

f (x , ) (1  + x , )  + Pe-f(x* ) = -bx ,eY(~* ), P = RZ2/Ax,(1 + 5) (60) 

From (60) we can compute f ( x , )  and then from (56)-(59) we can 
determine dl, d2, d3 . . . . .  j~, and x ,  as functions of  A, Z, and the four unknown 
dimensionless parameters a, b, ~p, ~ .  Then from (50) we can determine the 
binding energy Eb of a nucleus as a function of these four parameters. 

In order to determine the parameters a, b, ~p, and ~ we have performed 
computer calculations of Eb(A, Z, a, b, ~p, ~ )  by using (50) and (56)-(60) 
and compared them with the well-known experimental values ~bxP(A, Z) of  
the binding energies of  nuclei (Acosta et  al., 1973). The parameters a and b 
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were varied over wide limits and 8p and ~n were determined as functions 
~p(a, b) and ~n(a, b) from using the equation Eb = E~, xp twice for the two 
nuclei ~07^~ and 197A.. 47 z-x~ 79 ,-,u by the method of  successive approximations.  

In accordance with (5), we considered nuclei with A --> 20. The compari-  
son of the calculated binding energies Eb with ~b xp gave the fol lowing values 
of the parameters a, b, ~p, and gn: 

a = 11.0, b = 0 ,049,  ~p = 0 .015608 ,  ~.  = 0 .034606  

(61) 

The results of the computer  calculations are given in Table I. It is seen 
from Table I that the computed values Eb of  the binding energies of nuclei  
are very close to their experimental  values ~ P .  

The values of  the computed radii r ,  of  nuclei  are also close to their 
experimental  values. As follows from Table I, the radius r ,  of  a nucleus can 

be represented in the form 

Table I. Computed Radii (r,, fm) and Computed and Experimental Binding Energies of 
Nuclei per Nucleon (EblA and E~bXP/A, MeV) 

Z A r, EJA Eeb~PlA Z A r, EblA E~bXPlA 

10 20 3 . 8 3 7  8.130 8.032 58 140 6 . 9 8 1  8.360 8.378 
12 25 4 . 1 0 8  8.254 8.224 60 145 7.057 8.318 8.312 
14 30 4.345 8.363 8.521 62 150 7.131 8.274 8.263 
16 35 4 . 5 5 6  8.455 8.538 64 155 7.203 8.230 8.213 
18 40 4 . 7 4 7  8.528 8.596 66 160 7 . 2 7 4  8.184 8.186 
20 45 4 . 9 2 2  8,586 8.630 68 166 7 . 3 5 9  8.147 8.141 
22 50 5.084 8.631 8.756 70 170 7.411 8.090 8.106 
24 55 5.235 8.663 8.728 72 176 7 . 4 9 3  8.052 8.060 
26 58 5 . 3 1 6  8.736 8.792 74 180 7 . 5 4 3  7.993 8.024 
28 65 5.511 8.700 8.737 76 185 7 . 6 0 7  7.943 7.982 
30 70 5 . 6 3 9  8.706 8.730 78 190 7 , 6 6 9  7.892 7.947 
32 75 5.760 8.706 8.696 79 195 7.735 7.894 7.921 
34 80 5 . 8 7 5  8.700 8.711 80 200 7 . 8 0 0  7.896 7.906 
36 85 5 . 9 8 6  8.689 8.700 82 205 7 . 8 6 0  7.846 7.874 
38 90 6 . 0 9 2  8.673 8.700 84 210 7 . 9 1 8  7.795 7.834 
40 95 6.195 8.654 8.645 86 215 7.975 7.744 7.764 
42 100 6.294 8.631 8.604 88 220 8 . 0 3 2  7.692 7.7 ! 2 
44 105 6 . 3 8 9  8.606 8.566 90 225 8 . 0 8 7  7.640 7.660 
46 110 6.481 8.577 8.553 92 230 8 . 1 4 2  7.587 7.621 
48 115 6.570 8.546 8.509 94 235 8 . 1 9 6  7.533 7.579 
50 120 6 . 6 5 7  8.512 8.505 96 240 8 . 2 4 9  7.480 7.543 
52 125 6.742 8.477 8.458 98 245 8.301 7.426 7.500 
54 130 6 . 8 2 4  8.439 8.438 100 250 8.353 7.371 7.462 
56 135 6.903 8.400 8.398 102 255 8.404 7.317 7.430 
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r .  = ot . (A,  Z )A  113, 1.325 < a , (A,  Z) < 1.414 fin, A -> 20 
(62) 

Formula (62) accords with experimental results on the interactions of 
nuclei with neutrons. It follows from these experiments that the radii r ,  of  
nuclei are approximately proportional to A ~/3 and the coefficient ~t,(A, Z) = 
1.3-1.4 fm (Naumov, 1984). 

Consider the nuclear potential ~p of a nucleus. In the region 0 -< r -< 
r ,  the function ~p can be calculated by formulas (52), (56), and (60). Computer 
calculations showed that the power series in (52) has a very good convergence 
and we can approximately write 

q~(r) = q~(0)[l + dl(vr) 2 + d2(vr) 4 -I- d3(pr)6], 0 -< r <- r ,  (63) 

where dl, d2, and d3 are determined by formulas (57). 
In the region r -> r ,  the potential q~ is as follows: 

tp(r) = q~(r,) exp[v(r ,  - r)]r , /r ,  r >- r ,  (64)  

Let us consider the constant of strong interaction. As follows from (58) 
and (61), we have 

G2/hc)  ~ 0.080 (65) 

The value (65) is the known constant of the strong interaction of nucleons 
inside nuclei (Acosta et  al., 1973; Ericson and Weise, 1988). In this case we 
have low-energy interactions of nucleons. 

Let us examine the case of high-energy interaction. Consider a nucleus 
which interacts with a high-energy particle. Let us choose an arbitrary instant 
of time x ~ and an inertial frame of reference in which at this instant the 
nucleus velocity is zero: dx'~/dx ~ = 0, a = 1, 2, 3. 

Then for the nucleus at the chosen instant we have, from (1)-(3), 

e ~/cz aq~lOx k + ~l(OAolOx k - OAetax ~ (66) 
= Wk, (x l, x z, x 3) e fZ(x ~ 

where 

~ /=  0/p0, Wk = e~/4(c 2 d2xddx2oo + a~/axo dxddxo) (67) 

a2q~[aXnOXn d- 112~ : -47r(G/mp)2po e~/c2, v = m~c lh  (68) 

02Ao/OX"OX, = 4-tr0, OAtlOxk = 0 (69) 

fl(x ~ is the spatial volume occupied by the nucleus. 
From (66) we get 
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where 

OWk/OXk = e 'r  02q)/OxkOxk 
+ ~l(OZAolOxkOxk - OZAelOxkOx ~ + U (70) 

U = ( l l c2 )e  'p/c20q)lOx k Oq~lOxk + a~llOxk (OAolOx k - OAJOx ~ 

From (68)-(70) we find 

U - OWt,/OXk = e~/~2[4"tr(GIm~)2poe*/r + v2q~] - 4~rO~/, 

Hence 

(71) 

= 0/p0 
(72) 

4xrO~[(G/mp~)2e 2~k~ - 1] = U - OWelaXk -- vZq~e ~/?" (73) 

As follows from (73), inside the nucleus the extreme value of the nuclear 
potential q~ satisfies the correlation 

Ge~'~/mp~l = 1 (74) 

since in this case we have the infinite value of the charge density: 0 = ~. 
It must be noted that formula (74) is also correct when quantum mechani- 

cal effects are essential (A < 20). In this case only formula (67) for Wk must 
be changed and therefore the left-hand side of (73) and hence formula (74) 
are right. 

For the proton, ~/ = const --- eplmf, and from (74) we find the extreme 
value of  the nuclear potential inside the proton 

q~ = - c  2 ln (G/e , )  (75) 

Outside the proton we have 

mpq~ = - g 2 e - V r l r  (76) 

where g21hc is a dimensionless characteristic of  the strong interaction. 
It follows from (75) and (76) that the extreme value of g can be deter- 

mined by the correlation 

g2 e -~Wrp  = - mpq~( re) = mpc 2 ln( G/  ep) (77) 

where rp is the proton radius. 
From (77) we find 

gZlhc = (mplm,,)vrpe TM" ln( Glep) (78) 

As follows from experiments (Naumov, 1984), in the case under consid- 
eration rp ~- 1.2 fm and from (78) and (58), (61) we get 

g21hc ~ 15.6 (79) 
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It is interesting to note that the obtained constant (79) of the high-energy 
interaction of protons is in accord with its experimental value, which is 
approximately equal to 15 (Acosta et al., 1973). 

Hence the obtained results are in accord with the experimental values 
of the binding energies of nuclei, their radii, and the constant of strong 
interaction. 
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